Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Socially Pertinent Robots in Gerontological Healthcare (2404.07560v1)

Published 11 Apr 2024 in cs.RO and cs.AI

Abstract: Despite the many recent achievements in developing and deploying social robotics, there are still many underexplored environments and applications for which systematic evaluation of such systems by end-users is necessary. While several robotic platforms have been used in gerontological healthcare, the question of whether or not a social interactive robot with multi-modal conversational capabilities will be useful and accepted in real-life facilities is yet to be answered. This paper is an attempt to partially answer this question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities. The software architecture, developed during the H2020 SPRING project, together with the experimental protocol, allowed us to evaluate the acceptability (AES) and usability (SUS) with more than 60 end-users. Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. Al Moubayed, S., Beskow, J., Skantze, G., Granström, B.: Furhat: a back-projected human-like robot head for multiparty human-machine interaction. In: Cognitive Behavioural Systems: COST 2102 International Training School, Dresden, Germany, February 21-26, 2011, Revised Selected Papers, pp. 114–130 (2012). Springer Keizer et al. [2014] Keizer, S., Ellen Foster, M., Wang, Z., Lemon, O.: Machine learning for social multiparty human–robot interaction. ACM transactions on interactive intelligent systems (TIIS) 4(3), 1–32 (2014) Furhat Robotics [2015] Furhat Robotics, P.: Franny, frankfurt airport’s new multilingual robot concierge can help you in over 35 languages. Furhat Robotics Press Release (2015) Foster et al. [2019] Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Keizer, S., Ellen Foster, M., Wang, Z., Lemon, O.: Machine learning for social multiparty human–robot interaction. ACM transactions on interactive intelligent systems (TIIS) 4(3), 1–32 (2014) Furhat Robotics [2015] Furhat Robotics, P.: Franny, frankfurt airport’s new multilingual robot concierge can help you in over 35 languages. Furhat Robotics Press Release (2015) Foster et al. [2019] Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Furhat Robotics, P.: Franny, frankfurt airport’s new multilingual robot concierge can help you in over 35 languages. Furhat Robotics Press Release (2015) Foster et al. [2019] Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  2. Keizer, S., Ellen Foster, M., Wang, Z., Lemon, O.: Machine learning for social multiparty human–robot interaction. ACM transactions on interactive intelligent systems (TIIS) 4(3), 1–32 (2014) Furhat Robotics [2015] Furhat Robotics, P.: Franny, frankfurt airport’s new multilingual robot concierge can help you in over 35 languages. Furhat Robotics Press Release (2015) Foster et al. [2019] Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Furhat Robotics, P.: Franny, frankfurt airport’s new multilingual robot concierge can help you in over 35 languages. Furhat Robotics Press Release (2015) Foster et al. [2019] Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  3. Furhat Robotics, P.: Franny, frankfurt airport’s new multilingual robot concierge can help you in over 35 languages. Furhat Robotics Press Release (2015) Foster et al. [2019] Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  4. Foster, M.E., Craenen, B., Deshmukh, A., Lemon, O., Bastianelli, E., Dondrup, C., Papaioannou, I., Vanzo, A., Odobez, J.-M., Canévet, O., et al.: MuMMER: Socially intelligent human-robot interaction in public spaces. arXiv preprint arXiv:1909.06749 (2019) Vlachos et al. [2020] Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  5. Vlachos, E., Hansen, A.F., Holck, J.P.: A robot in the library. In: International Conference on Human-computer Interaction, pp. 312–322 (2020). Springer Gunson et al. [2022] Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  6. Gunson, N., García, D.H., Sieińska, W., Dondrup, C., Lemon, O.: Developing a social conversational robot for the hospital waiting room. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1352–1357 (2022). IEEE Sackl et al. [2022] Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  7. Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., Tscheligi, M.: Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 141–148 (2022). IEEE Langedijk et al. [2020] Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  8. Langedijk, R.M., Odabasi, C., Fischer, K., Graf, B.: Studying drink-serving service robots in the real world. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 788–793 (2020). IEEE Stegner et al. [2023] Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  9. Stegner, L., Senft, E., Mutlu, B.: Situated participatory design: A method for in situ design of robotic interaction with older adults. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2023) Blavette et al. [2022] Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  10. Blavette, L., Rigaud, A.-S., Anzalone, S.M., Kergueris, C., Isabet, B., Dacunha, S., Pino, M.: A robot-mediated activity using the nao robot to promote covid-19 precautionary measures among older adults in geriatric facilities. International Journal of Environmental Research and Public Health 19(9), 5222 (2022) González-González et al. [2021] González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  11. González-González, C.S., Violant-Holz, V., Gil-Iranzo, R.M.: Social robots in hospitals: a systematic review. Applied Sciences 11(13), 5976 (2021) Hahkio [2020] Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  12. Hahkio, L.: Service robots’ feasibility in the hotel industry: A case study of Hotel Presidentti. PhD thesis, Laurea University of Applied Sciences (2020) Wagner et al. [2023] Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  13. Wagner, N., Kraus, M., Lindemann, N., Minker, W.: Comparing Multi-User Interaction Strategies in Human-Robot Teamwork. In: The International Workshop on Spoken Dialogue Systems Technology, IWSDS 2023, p. 12 (2023) Cooper et al. [2023] Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  14. Cooper, S., Ros, R., Lemaignan, S.: Challenges of deploying assistive robots in real-life scenarios: an industrial perspective. In: IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 435–442 (2023) Xu et al. [2022] Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  15. Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: Transcenter: Transformers with dense representations for multiple-object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(6), 7820–7835 (2022) Dubenova et al. [2022] Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  16. Dubenova, M., Zderadickova, A., Kafka, O., Pajdla, T., Polic, M.: D-inloc++: Indoor localization in dynamic environments. In: Pattern Recognition, pp. 246–261. Springer, Cham (2022) Andriella et al. [2024] Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  17. Andriella, A., Ros, R., Ellinson, Y., Gannot, S., Lemaignan, S.: Dataset and evaluation of automatic speech recognition for multi-lingual intent recognition on social robots. In: Proceedings of the ACM International Conference on Human Robot Interaction (2024) Tonini et al. [2023] Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  18. Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023) Berdasco et al. [2019] Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  19. Berdasco, A., López, G., Diaz, I., Quesada, L., Guerrero, L.A.: User experience comparison of intelligent personal assistants: Alexa, google assistant, siri and cortana. UCAml 2019, 51 (2019) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  20. Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Dondrup, C., Lemon, O.: Multi-party multimodal conversations between patients, their companions, and a social robot in a hospital memory clinic. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2024) Mohamed and Lemaignan [2021] Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  21. Mohamed, Y., Lemaignan, S.: Ros for human-robot interaction. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (2021) Cooper et al. [2020] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  22. Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., Ferro, F.: ARI: The Social Assistive Robot and Companion. In: 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, pp. 745–751 (2020) Labbé and Michaud [2019] Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  23. Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics 36(2), 416–446 (2019) Mur-Artal and Tardós [2017] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  24. Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) Sarlin et al. [2019] Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  25. Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: CVPR (2019) Lee et al. [2023] Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  26. Lee, S., Lee, S., Seong, H., Kim, E.: Revisiting self-similarity: Structural embedding for image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23412–23421 (2023) Kukelova et al. [2016] Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  27. Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics and applications in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1799–1808 (2016) Knapp and Carter [1976] Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  28. Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE transactions on acoustics, speech, and signal processing 24(4), 320–327 (1976) Zhang et al. [2021] Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  29. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision 129, 3069–3087 (2021) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  31. H2020 SPRING Project: Deliverable D3.2: Audio-visual speaker tracking in relevant environments. Link (2022) Cao et al. [2019] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  32. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019) Setti et al. [2015] Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  33. Setti, F., Russell, C., Bassetti, C., Cristani, M.: F-formation detection: Individuating free-standing conversational groups in images. PloS one 10(5), 0123783 (2015) Chazan et al. [2021] Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  34. Chazan, S.E., Goldberger, J., Gannot, S.: Speech enhancement with mixture of deep experts with clean clustering pre-training. In: IEEE International Conference on Audio and Acoustic Signal Processing (ICASSP), Toronto, Ontario, Canada (2021) Opochinsky et al. [2023] Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  35. Opochinsky, R., Moradi1, M., Gannot, S.: Single-microphone speaker separation and voice activity detection in noisy and reverberant environments. Open Journal on Signal Processing (2023). Submitted for publication Eisenberg et al. [2023] Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  36. Eisenberg, A., Gannot, S., Chazan, S.E.: A two-stage speaker extraction algorithm under adverse acoustic conditions using a single-microphone. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Dawalatabad et al. [2021] Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  37. Dawalatabad, N., Ravanelli, M., Grondin, F., Thienpondt, J., Desplanques, B., Na, H.: Ecapa-tdnn embeddings for speaker diarization. arXiv preprint arXiv:2104.01466 (2021) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  38. H2020 SPRING Project: Deliverable D5.2: Multi-Party ASR and Conversational System in Realistic Environments. Link (2022) Chong et al. [2020] Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  39. Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020) Fang et al. [2021] Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  40. Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11390–11399 (2021) Recasens et al. [2015] Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  41. Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., ??? (2015) Tonini et al. [2022] Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  42. Tonini, F., Beyan, C., Ricci, E.: Multimodal across domains gaze target detection. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 420–431 (2022) Zhang et al. [2016] Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  43. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters 23(10), 1499–1503 (2016) Ranftl et al. [2020] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  44. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence (2020) Salam and Chetouani [2015] Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  45. Salam, H., Chetouani, M.: Engagement detection based on mutli-party cues for human robot interaction. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 341–347 (2015) Anzalone et al. [2015] Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  46. Anzalone, S.M., Boucenna, S., Ivaldi, S., Chetouani, M.: Evaluating the engagement with social robots. International Journal of Social Robotics 7, 465–478 (2015) Beyan et al. [2017] Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  47. Beyan, C., Capozzi, F., Becchio, C., Murino, V.: Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Transactions on Multimedia 20(2), 441–456 (2017) D’incà et al. [2023] D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  48. D’incà, M., Beyan, C., Niewiadomski, R., Barattin, S., Sebe, N.: Unleashing the transferability power of unsupervised pre-training for emotion recognition in masked and unmasked facial images. IEEE Access (2023) Sherman et al. [2023] Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  49. Sherman, D., Hazan, G., Gannot, S.: Study of speech emotion recognition using BLSTM with attention. In: 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland (2023) Huang and Narayanan [2017] Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  50. Huang, C.-W., Narayanan, S.S.: Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 583–588 (2017) Bahdanau et al. [2014] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  51. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) Addlesee et al. [2023] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  52. Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Multi-party goal tracking with llms: Comparing pre-training, fine-tuning, and prompt engineering. In: Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (2023) Schauer et al. [2023] Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  53. Schauer, L., Sweeny, J., Lyttle, C., Said, Z., Szeles, A., Clark, C., McAskill, K., Wickham, X., Byars, T., Garcia, D.H., Gunson, N., Addlesee, A., Lemon, O.: Detecting agreement in multi-party conversational ai. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Kuhn [1955] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  54. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955) Lemaignan and Ferrini [2024] Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  55. Lemaignan, S., Ferrini, L.: Probabilistic fusion of persons’ body features: the mr. potato algorithm. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (2024) Siek et al. [2001] Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  56. Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Pearson Education, ??? (2001) Kruskal [1956] Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  57. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7(1), 48–50 (1956) Dijkstra [2022] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  58. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022) Porcheron et al. [2018] Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  59. Porcheron, M., Fischer, J.E., Reeves, S., Sharples, S.: Voice interfaces in everyday life. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018) Traum [2004] Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  60. Traum, D.: Issues in multiparty dialogues. In: Advances in Agent Communication: International Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14, 2003. Revised and Invited Papers, pp. 201–211 (2004). Springer Gu et al. [2022] Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  61. Gu, J.-C., Tao, C., Ling, Z.-H.: WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22) (2022) Eshghi and Healey [2016] Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  62. Eshghi, A., Healey, P.G.: Collective contexts in conversation: Grounding by proxy. Cognitive science 40(2), 299–324 (2016) Addlesee et al. [2024] Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  63. Addlesee, A., Cherakara, N., Nelson, N., García, D.H., Gunson, N., Sieińska, W., Romeo, M., Dondrup, C., Lemon, O.: A multi-party conversational social robot using llms. In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2024) Papaioannou et al. [2017] Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  64. Papaioannou, I., Curry, A.C., Part, J.L., Shalyminov, I., Xu, X., Yu, Y., Dušek, O., Rieser, V., Lemon, O.: Alana: Social dialogue using an ensemble model and a ranker trained on user feedback. Alexa Prize Proceedings (2017) Curry et al. [2018] Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  65. Curry, A.C., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xu, X., Dušek, O., Eshghi, A., Konstas, I., Rieser, V., et al.: Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018) Addlesee et al. [2023a] Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  66. Addlesee, A., Sieińska, W., Gunson, N., Garcia, D.H., Dondrup, C., Lemon, O.: Data collection for multi-party task-based dialogue in social robotics. In: Proceedings of the 13th International Workshop on Spoken Dialogue Systems Technology (IWSDS) (2023) Addlesee et al. [2023b] Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  67. Addlesee, A., Denley, D., Edmondson, A., Gunson, N., Garcia, D.H., Kha, A., Lemon, O., Ndubuisi, J., O’Reilly, N., Perochaud, L., Valeri, R., Worika, M.: Detecting agreement in multi-party dialogue: evaluating speaker diarisation versus a procedural baseline to enhance user engagement. In: Proceedings of the Workshop on Advancing GROup UNderstanding and Robots aDaptive Behaviour (GROUND) (2023) Dondrup et al. [2019] Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  68. Dondrup, C., Papaioannou, I., Lemon, O.: Petri Net Machines for Human-Agent Interaction (2019) Kruse et al. [2013] Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  69. Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61(12), 1726–1743 (2013) Mavrogiannis et al. [2023] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  70. Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., Oh, J.: Core challenges of social robot navigation: A survey. ACM Transactions on Human-Robot Interaction 12(3), 1–39 (2023) Singamaneni et al. [2023] Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  71. Singamaneni, P.T., Bachiller-Burgos, P., Manso, L.J., Garrell, A., Sanfeliu, A., Spalanzani, A., Alami, R., et al.: A survey on socially aware robot navigation: Taxonomy and future challenges. arXiv preprint arXiv:2311.06922 (2023) Camacho and Bordons [2007] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  72. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2007) Truong and Ngo [2016] Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  73. Truong, X.-T., Ngo, T.-D.: Dynamic social zone based mobile robot navigation for human comfortable safety in social environments. International Journal of Social Robotics 8(5), 663–684 (2016) H2020 SPRING Project [2022] H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  74. H2020 SPRING Project: Deliverable D6.3: Robot non-verbal behaviour system in realistic environments. Link (2022) Truong and Ngo [2017] Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  75. Truong, X.-T., Ngo, T.-D.: “to approach humans?”: A unified framework for approaching pose prediction and socially aware robot navigation. IEEE Transactions on Cognitive and Developmental Systems 10(3), 557–572 (2017) Chen et al. [2020] Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  76. Chen, G., Pan, L., Xu, P., Wang, Z., Wu, P., Ji, J., Chen, X., et al.: Robot navigation with map-based deep reinforcement learning. In: 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6 (2020). IEEE H2020 SPRING Project [2023] H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  77. H2020 SPRING Project: Deliverable D5.3: High-Level task planner in relevant environments. Link (2023) Folstein et al. [1975] Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  78. Folstein, M.F., Folstein, S.E., McHugh, P.R.: “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 12(3), 189–198 (1975) H2020 SPRING Project [2020] H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) H2020 SPRING Project: Deliverable D1.2: Privacy and Ethics guidelines for experimental validation and data collection. Link (2020) Micoulaud-Franchi et al. [2016] Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  79. Micoulaud-Franchi, J.-A., Sauteraud, A., Olive, J., Sagaspe, P., Bioulac, S., Philip, P.: Validation of the french version of the acceptability e-scale (aes) for mental e-health systems. Psychiatry Research 237, 196–200 (2016) Brooke [1996] Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  80. Brooke, J.: System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Evaluation In Industry (1996) Orinel and Constant [2021] Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  81. Orinel, F., Constant, N.: Le dossier de soins à l’ère du numérique. L’Aide-Soignante 35(231), 13–14 (2021) Pedersen et al. [2018] Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  82. Pedersen, I., Reid, S., Aspevig, K.: Developing social robots for aging populations: A literature review of recent academic sources. Sociology Compass 12(6), 12585 (2018) Góngora Alonso et al. [2019] Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019) Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
  83. Góngora Alonso, S., Hamrioui, S., Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemedicine and e-Health 25(7), 533–540 (2019)
Citations (3)

Summary

  • The paper evaluates the acceptability and usability of the ARI humanoid robot in real-world gerontology healthcare settings using quantitative metrics like AES and SUS.
  • Significant improvements in user acceptability were observed by integrating advanced dialogue systems and fine-tuned speech recognition modules.
  • Challenges included initial patient reluctance and organizational hurdles, highlighting the need for robust technology and careful ethical consideration for integration in healthcare.

Socially Pertinent Robots in Gerontological Healthcare: An Analysis

The paper "Socially Pertinent Robots in Gerontological Healthcare" provides an in-depth examination of the deployment of humanoid social robots in healthcare settings, specifically focusing on gerontology day-care facilities. The research explores the acceptability and usability of such robots, emphasizing their multi-modal conversational capabilities within real-world interactions.

Core Contributions

  1. Development and Implementation: The paper details the creation of a sophisticated software architecture for the ARI humanoid robot, which is equipped with various modules designed for perception (self-localization, human localization, speech processing, and human behavior analysis) and action (multi-party conversation, non-verbal behavior generation). These modules were tested in a real-world environment, highlighting the applied methodologies for integrating and optimizing robotic capabilities in healthcare settings.
  2. Experimental Setup: The experiments were conducted at the Broca Gerontology Day-care Hospital in Paris, where the robot engaged with patients and their companions. The paper discusses the ethical and practical considerations in deploying advanced robotic systems in such sensitive environments, including consent forms, patient security, and compliance with healthcare regulations.
  3. Evaluation Metrics: The paper used the Acceptability E-scale (AES) and the System Usability Scale (SUS) to quantitatively assess user feedback from more than 60 end-users. These metrics provided a framework for evaluating the subjective acceptance and perceived usability of the robots by patients and companions.

Key Findings

  • Improvement in Acceptability and Usability: The research demonstrated significant improvements in user acceptability metrics between two experiment waves by integrating advanced dialogue management systems incorporating LLMs and fine-tuned automatic speech recognition (ASR) modules. The AES scores showed a statistically significant increase, particularly among patients in the paper.
  • Challenges Encountered: Practical challenges included patients’ initial reluctance to interact with the robot, organizational issues such as scheduling conflicts, and technological apprehensions, which were addressed by progressively enhancing the robot's software capabilities.

Implications for Future Developments

  • Technological Enhancements: Future advancements in robotic algorithms, particularly in natural language processing and human-robot interaction, could further enhance the robot's responsiveness and communication effectiveness. This may include leveraging further developments in AI, such as continual learning models, to adapt to evolving user interactions dynamically.
  • Facilitating Integration in Healthcare: The paper suggests potential for broader integration of robotic systems in healthcare environments beyond gerontology, such as real-time integration with hospital information systems for logistic applications. This integration could entail handling confidential and sensitive patient data, necessitating strict adherence to ethical and security standards.
  • Broader Social Impacts: As the technology matures, there may be wider societal implications of deploying social robots, including their role in improving elderly care and addressing challenges in geriatric social interaction. The acceptance of technology by older adults and healthcare providers remains a critical element of success.

Conclusion

The paper contributes significantly to the understanding of using social robots in gerontological healthcare by providing empirical data on user acceptance and usability, thereby informing future developments in healthcare robotics. The research underscores the importance of technological robustness and adaptability, as well as the value of user-centered design in enhancing the integration and effectiveness of social robots in real-world environments. With continuing advancements and ethical considerations, such systems may become integral to healthcare service delivery in geriatrics and beyond.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com